Anthony Cruz, Ann Njeru, & John Paul Minda Abstract #5150

Background

Methods

•	This experiment is a partial replication of					
	Soderstrom et al.'s (2015) experiment 1b ⁴					
•	Participants studied 60 cue-target word pairs					
	- Thirty unrelated, $FAS = 0.00$					
	- Thirty related, $0.40 < FAS < 0.75$					
	 Each presented for 8s 					
•	Sixty cued recall trials					
•	Ninety-six associative recognition trials					
	 – 12 Intact 					
	 16 Recombined 					
	- 16 Old-New					
	– 16 New-Old					
	 36 Unpresented 					
	Ν	No JOLs	JOLs	Total		
					•	
	Recall First	6	10	16	- I	
					٠	
	Recognition	Q	16	21	t	
	First	0	10			
	Tatal	A A	00	4.0		
	Iotal	14	26	40		
				I		
•	Learning conditions: JOL vs. No JOL					
	 8s study time is constant 					
	 JOLs: In last 4s, between 0 (Sure I won't 					
	remember) and 100 (Sure I will remember)					
•	Test order varied between participants					
•	Data collection	n ongoing (T	arget N =	= 120)		

Boost or Bust? **Role of JOLs in Word Pair Recognition**

 Cue-Strengthening Hypothesis: JOLs enhance pre-existing cue-target association⁴ • Cue-Strengthening is compatible with:

- Covert Retrieval¹
- Spreading Activation²

 If JOLs trigger spreading activation, then we should expect JOLs to be associated with more false memories

Do JOLs increase the likelihood of a false memory occurring?

• We seek to answer this question by:

- Replicating prior work on cued recall, and
- Adding an associative recognition test

- 3-minute retention interval (Tetris)
- Cued recall procedure
- 8s study time is constant
- JOL learners take 4s to type a JOL between 0 (Sure I won't remember) and 100 (Sure I will remember)
- Recognition procedure
- Each pair presented for 8s
- Indicate if each pair was old or new

- Sensitivity (d') computed using Intact vs. Recombined pairs
- Hit rates and false alarm rates were log transformed as follows:

$$H = P("old"|old) = \frac{N_{"old" \& old} + 0.5}{N_{old} + 1}$$

$$FA = P("old"|new) = \frac{N_{"old" \& new} + 0.5}{N_{new} + 1}$$

$$d' = z(H) - z(FA)$$

	1.00	
	0.75	
	0.50	
	0.25	۰
	0.00 ⁻ 1.00 ⁻	•••
Rate	0.75	
Marm	0.50	••
alse /	0.25	•
	0.00 ⁻ 1.00 ⁻	••
	0.75	
	0.50	•
	0.25	•••
	0.00	••
lı fe lı v	n the ewer n Re vith <u>r</u>	e Ree fals cogi nore
• F	Pos	itive
t • (esta Cue ullv	s wł -Str aco
-	- In de	npro epe
-	- D fa	istir mili
• \ r	Whe nen	en ro nori
1.Kubik	V., Koslow	ski, K., Scł

Results

e JOL reactivity is observed in both memory hen cued recall occurs first	 When JOLs e
rengthening and similar hypotheses cannot count for this positive JOL reactivity	JC
oved recognition performance does not end on cue-target association	
nct mechanisms may lead to improved liarity and recollection following JOLs	 Furthe errors
recall test occurs before recognition, false ies may be resolved via <i>recall-to-reject</i> ³	Future Iearnin

057–1077. https://doi.org/10.1007/s11409-022-09307-v .Maxwell, N. P., & Huff, M. J. (2024). Judgment of learning reactivity reflects enhanced relational encoding on cued-recall but not recognition tests. Metacognition and Learning 19(1), 189–213. https://doi.org/10.1007/s11409-023-09369-4 3.Rotello, C. M., & Heit, E. (2000). Associative recognition: a case of recall-to-reject processing. Memory & Cognition, 28(6), 907–922. https://doi.org/10.3758/bf03209339 .Soderstrom, N. C., Clark, C. T., Halamish, V., & Bjork, E. L. (2015). Judgments of learning as memory modifiers. Journal of Experimental Psychology. Learning, Memory, and

Ann Njeru, anjeru2@uwo.ca John Paul Minda, jpminda@uwo.ca Psychonomics 2024